备战2024数学建模国赛(模型十三):粒子群算法 优秀案例(一)制动器试验台的计算机控制方法分析与设计

 专栏内容(赛前预售价99,比赛期间299): 2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)

python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。

35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群算法、蒙特卡洛模拟、聚类模型、线性规划、粒子群算法、神经网络、相关系数、灰色预测、灰色关联分析、模糊综合评价、模拟退火、时间序列ARMA、方差分析支持向量机、插值、排队论、拟合模型、微分方程、层次分析法、小波分析、多元回归、图论floyd算法、图论Dijkstra模型、因子分析、动态规划、博弈论、决策树、典型相关分析、元胞自动机、主成分分析、TOPSIS法。

目录

摘要

一.问题重述

二.模型假设

三.符号说明

四.问题分析

五.数据预处理

六.问题一模型的建立与求解

七.问题二模型的建立与求解

八.问题三模型的建立与求解

 模型的优缺点

参考文献

附录


摘要


        在我国制造业升级“中国制造 2025”的国家战略下,为了预测控制高炉炼铁过程,本文建立了神经网络预测模型、混沌时间序列预测模型,并基于遗传算法(GA)改进了神经网络模型,使用粒子群算法(PSO)优化了含硫量[S]。
        针对问题一,首先,本文对附件所给数据进行了数据预处理,剔除了异常值并归一化,得到 932 组有效数据。然后,建立 BP 神经网络预测模型预测了含硅量[Si],并分析了含硅量[Si]、含硫量[S]、鼓风量 FL 和喷煤量 PML 之间的相关性。其次,建立了小波神经网络预测模型和遗传算法(GA)优化的 BP 神经网络预测模型,并比较了三者优劣。接着,选取训练样本数据 922 组,验证样本数据 10 组,发现遗传算法优化的 BP 神经网络预测模型和小波神经网络预测模型预测效果较好,BP 神经网络预测模型较差。最后,本文建立了混沌时间序列预测模型,并对含硅量[Si]进行了混沌局部线性一步预测和二步预测。
        针对问题二,首先,本文选取了 922 组数据作为训练样本,10 组数据作为验证样本,将传统的 BP 神经网络预测模型、小波神经网络模型预测模型、基于遗传算法优化 BP 神经网络预测模型和混沌时间序列预测模型,分别预测后 10炉次含硅量[Si]的结果与实际值进行对比,计算得到:BP 预测成功率为 20%,小波预测为 70%,GA+BP 预测为 60%,混沌预测为 80%。其次,通过不同的模型分别预测了后 10 炉次含硅量[Si]的结果,预测了炉温升降方向,计算得到:BP预测成功率为 40%,小波预测为 100%,GA+BP 预测为 100%,混沌预测为 100%。最后,通过讨论神经网络训练函数的选取、神经网络性能参数的设定与混沌时间序列预测邻域半径的选取,分析了动态预测控制的可行性。

        针对问题三,首先,本文根据遗传算法(GA)优化 BP 神经网络的预测模型,预测了含硫量[S],并找出了含硫量[S]与含硅量[Si]、鼓风量 FL 和喷煤量 PML之间的关系。然后,本文使用粒子群算法(PSO)优化了含硫量[S],得出当鼓风量归一化后 FL=0.7012 和喷煤量 PML=0.0809 时,含硫量[S]有最小值。最后,本文分析了在含硫量[S]最优条件下,预测控制含硅量[Si]的预期效果,在含硫量[S]取最小值时,预测到此时含硅量[Si]较小,为 0.5712。
        针对问题四,我们结合建模背景、求解模型所得结果与分析结果所得结论,根据复杂流程工业智能控制的意义,浅谈了建模的心得体会。通过大数据挖掘,我们可以确定生产过程的最佳途径与最佳参数范围,获得最佳生产效果。


关键词:BP 神经网络,小波神经网络,遗传算法,混沌时间序列,粒子群算法

一.问题重述


“中国制造 2025”是我国制造业升级的国家大战略。其技术核心是智能制造,智能化程度相当于“德国工业 4.0”水平。通过大数据挖掘,确定生产过程的最佳途径与最佳参数控制范围,预测性地动态调整生产过程控制,获得最佳生产效果。本课题数学建模需要解决的问题如下:
 从给定数据表中[Si]-[S]-FL-PML 依序号排列的 1000 炉生产大数据中,自主选取学习样本和算法,建立[Si]预测动态数学模型,包括一步预测模型和二步预测模型。全面论述你的数学建模思路。
 自主选取验证样本,验证你所建立的数学模型的预测成功率。包括数值预测成功率和炉温升降方向预测成功率,并讨论动态预测控制的可行性。
 以质量指标铁水含硫量[S]为例,含硫量低,铁水质量好,可以生产优质钢,制造优质装备。试建立质量指标[S]的优化数学模型,并且讨论按照优化模型计算结果进行[Si]预测控制的预期效果。
 讨论你所建立的复杂流程工业智能控制大数据建模的心得体会。


二.模型假设


(1)假设在混沌局部线性预测中,邻域  的选取客观准确,主观性较小。
(2)假设在混沌局部线性预测中,局部特性可以准确代表整体特性。
(3)假设在神经网络预测中,输入变量作为网络的第一层合理有效。
(4)假设附件中提供的数据及所使用的数据都真实准确。
(5)假设铁水含硅量[Si]、含硫量[S]、喷煤量 PML 和鼓风量 FL 组成的数据能代表高炉炼铁过程,体现高炉炼铁特性。三.符号说明

三.符号说明

四.问题分析


        问题一的分析:在问题一中,题目要求我们从给定数据表中[Si]-[S]-FL-PML依序号排列的 1000 炉生产大数据中,自主选取学习样本和算法,建立[Si]预测动态数学模型,包括一步预测模型和二步预测模型。其中的一步预测模型和二步预测模型指的是预测步长分别取 1 和 2,前后两炉铁水含硅量,即炉温之间是具有相关性的。这里的学习样本不能是全部的 1000 炉生产大数据,因为问题二中需要我们验证所建立的数学模型的预测成功率,所以不能选择全部数据来训练,只能选择一部分数据来学习训练。至于建模的算法,需要结合问题本身来选择。
        问题二的分析:在问题二中,题目要求我们自主选取验证样本,验证我们所建立的数学模型的预测成功率,包括数值预测成功率和炉温升降方向预测成功率。并且讨论其动态预测控制的可行性。我们需要从 1000 炉生产大数据中剩下未学习训练的数据中,选取验证样本,验证包括[Si]含量和炉温升降方向的成功率。难点在于讨论其动态预测控制的可行性,以及如何提高算法的预测成功率。
        问题三的分析:在问题三中,题目要求我们以质量指标铁水含硫量[S]为例,含硫量低,铁水质量好,可以生产优质钢,制造优质装备。试建立质量指标[S]的优化数学模型,并且讨论按照优化模型计算结果进行[Si]预测控制的预期效果。通过大数据挖掘,确定生产过程的最佳途径与最佳参数控制范围,预测性地动态调整生产过程控制,获得最佳生产效果,建立优化模型,讨论对[Si]的预测控制。
        问题四的分析:在问题四中,题目要求我们讨论我们所建立的复杂流程工业
智能控制大数据建模的心得体会,这需要结合我们模型的结果和背景来讨论。


五.数据预处理


        [Si]含量预测模型的成功率取决于过去[Si]含量数据的质量和数量,由于受到仪表精度、可靠性、现场测量环境、炉温状况及人为因素的影响,“智能控制专家系统”在线采集的数据会存在异常等情况,需剔除不完整和异常数据。如果用这些数据来预测,会导致预测的成功率下降。而且输入变量众多且相互影响,必须对样本数据进行预处理,要对原始数据做异常值剔除、归一化和相关性分析等。
5.1 异常值剔除
        图 1~图 4 分别是 1000 炉含硅量[Si]、含硫量[S]、鼓风量 FL 和喷煤量 PML
的原始时间序列数据,从图 1~图 4 中可以看出,个别含硅量[Si]、含硫量[S]、鼓
风量 FL 和喷煤量 PML 的数据波动较大,需要进行异常值的剔除。如果直接用
这些数据来预测,将会导致预测的成功率下降,甚至预测的结果完全偏离实际值。

六.问题一模型的建立与求解

BP 神经网络的算法具有良好的自适应性和分类识别等能力。神经网络可以
看作是一个函数映射,适用于有明确的输入与输出的对应关系,但其中的函数不
容易确定的问题[1]。而含硅量[Si]的预测可以看成将含硫量[S]、鼓风量 FL 和喷
煤量 PML 作为输入,含硅量[Si]为输出的复杂函数映射问题。因此,可以利用
BP 神经网络作为含硅量[Si]的进行预测。下面阐述如何将 BP 神经网络用于含硅
量[Si]的预测。
6.1.2 训练集和验证集
经过异常值剔除和归一化等预处理之后,总共有 932 炉次的含硅量[Si]、含
硫量[S]、鼓风量 FL 和喷煤量 PML,将前 922 炉次的含硫量[S]、鼓风量 FL 和喷
煤量 PML 作为学习训练的样本,剩余 10 炉次的数据作为验证的样本,即:训练
集为前 922 炉次的时间序列数据,验证集为后 10 炉次的数据。
6.1.3 三层 BP 神经网络结构
三层 BP 网络输入节点为 m 个(与 p 同维),输出节点为 c 个,隐节点为 r 个,
输入层到隐层的激活函数采用 Sigmoid 型函数,隐含层到输出层的激活函数采用

6.2.3 小波神经网络的流程
小波网络模型的修正算法与 BP 神经网络模型基本相同,均采用梯度下降法
来修正网络模型的权值,使小波神经网络模型的预测输出结果不断逼近期望的输
出值,小波神经网络的流程主要有以下几个主要步骤:
 网络模型的初始化:首先需要初始化小波函数的伸缩因子、平移因子、
网络的学习速率和网络的连接权重。
 仿真数据的分类:把高炉炉温数据分为训练部分和测试部分,训练数据
用于训练网络,测试数据则是用于测试网络的预测精度。
 预测结果输出:把高炉铁水温度训练数据输入网络,计算出网络模型的
预测输出,并计算网络模型输出与期望输出之间的误差。
 权值的修正:由误差在线修正网络模型的权值和小波网络模型参数。最
后判断算法是否结束,如果没有结束,则返回步骤 3。
 小波神经网络预测模型的仿真验证。
6.2.4 小波神经网络的参数
BP 神经网络预测模型中的参数主要包括隐形节点个数、学习概率 lr1、学习
概率 lr2 和迭代次数 n,本文中设置的 BP 神经网络预测模型中的参数如下表所示:

七.问题二模型的建立与求解


7.1 模型的预测成功率
7.1.1 训练集与验证集
经过异常值剔除和归一化等预处理之后,总共有 932 炉次的含硅量[Si]、含
硫量[S]、鼓风量 FL 和喷煤量 PML,将前 922 炉次的含硫量[S]、鼓风量 FL 和喷
煤量 PML 作为学习训练的样本,剩余 10 炉次的数据作为验证的样本,即:训练
集为前 922 炉次的时间序列数据,验证集为后 10 炉次的数据。
然后,验证本文所建立的数学模型的预测成功率,包括数值预测成功率和炉温升降方向预测成功率,验证结果见下文。

由表 14 中可以看出:尽管采用添加动量相的神经网络预测算法,由于学习
速率固定,网络的训练速度仍旧很慢。如果盲目的增加学习速率,又会造成网络
在某处的波动。因此,训练函数采用带动量相的自适应学习速率的算法较为合适。
修改之后,网络的训练时间均在 10s 左右,大大提供了识别速率。
7.2.2 神经网络性能参数的设定
为了缩短运行时间,通过加大截止误差(trainParam.goal)和设定迭代次数
(trainParam.epochs)的方法来加快程序运行,这样会在一定程度上降低识别率。
当采用 traingdx 的训练函数后,网络运行速度加快,将截止误差(trainParam.goal)
设定为 0,迭代次数(trainParam. epochs)仍设定为 10000,发现每次促使训练
停止的为默认的截止梯度,此时的网络误差已足够小。
7.2.3 混沌时间序列预测的邻域半径
虽然基于混沌时间序列预测含硅量[Si]的数值预测成功率和炉温升降方向预
测成功率都较高,但是其中邻域半径  的选择对于结果有很大的影响。目前,邻
域半径  的选择具有主观性[10]。如果通过基于递归分析对邻域半径 进行参数估
计或基于噪声强度对邻域半径  进行参数估计,可以增加客观性,使得邻域半径
 的选择更加科学有效。综上,本文建立的几种改进的模型在动态预测控制方面,
具有可行性,参数的调节可以提高预测成功率,几种改进后模型的预测效果很好。

八.问题三模型的建立与求解

8.1 遗传算法优化 BP 神经网络预测 S 含量
8.1.1 构建预测含硫量[S]的神经网络
在问题二中,建立了基于遗传算法优化 BP 神经网络预测 Si 含量。同理,可
以基于遗传算法优化 BP 神经网络预测 S 含量。经过异常值剔除和归一化等预处
理之后,总共有 932 炉次的含硅量[Si]、含硫量[S]、鼓风量 FL 和喷煤量 PML,
将前 922 炉次的含硅量[Si]、鼓风量 FL 和喷煤量 PML 作为学习训练样本的输入
量,含硫量[S]作为输出量。然后,用此网络来预测不同含硅量[Si]、鼓风量 FL
和喷煤量 PML 时的含硫量[S],如图 30 所示。

 

 模型的优缺点

11.1 优点
BP 神经网络预测模型在处理非线性,强耦合的海量数据时,采用基于改进
的欧几里得距离相似性度量方法,很好地处理大量数据间的非线性和强耦合问
题,为实际操作模式提供了充实的理论依据[15]。基于遗传算法优化 BP 神经网络
的多元时间序列模型,其预测结果考虑了变量的时滞,因此预测结果误差较小。
混沌局部线性预测模型能很好地预测高炉铁水含硅量但就相关研究表明,对
于国内中小型高炉的其它预测模型很难启及它的命中效果,对实际生产具有深远
的指导意义。同时,混沌时间序列预测方法用于高炉[Si]预测有很好的发展方向。
11.2 缺点
混沌局部线性预测模型在选取领域半径ε时具有很大的主观性,领域内的所
有点均用于迭代规律的拟合,只考虑单一[Si]序列的历史数据预测[Si]等[16]。尽管
高炉喷煤模式匹配和演化策略取得了理论上的成功,但研究深度广度还尚欠,且
高炉喷煤冶炼过程操作模式优化方法目前仍处于探索阶段,还有待进一步完善。
虽然基于遗传算法优化的 BP 神经网络能提高网络的训练速度。但是,遗传
算法复杂的操作过程,使网络的搜索时间随着所研究问题复杂度不同呈指数倍增
长[20]。遗传算法在得到最优解时收敛缓慢也有可能收敛停止问题。

参考文献


[1] 于卓颖, 郑涛. 基于神经网络的高炉铁水硅含量和硫含量预报模型[C]// 炼铁共性技术
研讨会. 2015.
[2] 史燕. 高炉炉温预测控制模型的研究[D]. 杭州电子科技大学, 2009.
[3] 刘芳. 高炉炉温的多目标优化控制[D]. 浙江大学, 2001.
[4] 郜传厚, 刘祥官. 高炉冶炼过程的混沌性辨识Ⅰ.饱和关联维数的确定[J]. 金属学报,
2004, 40(4):347-350.
[5] 郜传厚, 周志敏. 高炉铁水 Si 含量的修正混沌加权一阶局部预报[J]. 物理学报, 2004,
53(12):4092-4097.
[6] 郜传厚, 周志敏, 邵之江. 高炉铁水含硅量的混沌局部线性预测[J]. 金属学报, 2005,
41(4):433-436.
[7] 郜 传 厚 , 周 志 敏 , 邵 之 江 . 高 炉 冶 炼 过 程 的 混 沌 性 解 析 [J]. 物 理 学 报 , 2005,
54(4):1490-1494.
[8] 郜传厚, 刘祥官, 周志敏. 基于 Lyapunov 指数的高炉铁水[Si]预报[J]. 高校应用数学学
报:, 2006, 21(3):264-270.
[9] 曾燕飞, 李虎山. 高炉铁水[Si]含量预测控制模型的设计与实现[J]. 微计算机信息, 2007,
23(10):64-66.
[10] 贺诗波, 刘祥官, 郜传厚,等. 高炉硅含量预测控制的时间序列混合建模[J]. 浙江大学学
报工学版, 2007, 41(10):1739-1742.
[11] 冯婷, 刘祥官, 马祥,等. 高炉炉温预测控制的变系数回归模型[J]. 浙江大学学报工学版,
2007, 41(10):1743-1745.
[12] 郜传厚, 渐令, 陈积明,等. 复杂高炉炼铁过程的数据驱动建模及预测算法[C]// 第 33 期
双清论坛. 2008:725-730.
[13] 冯婷. 基于非参数回归的高炉炉温预测控制研究[D]. 浙江大学理学院 浙江大学, 2008.
[14] 贺诗波. 自组织数据挖掘在高炉炉温预测控制中的应用[D]. 浙江大学理学院 浙江大
学, 2008.
[15] 熊欣. 基于改进的粒子群 BP 神经网络的高炉热状态预报模型的研究[D]. 重庆大学,
2008.
[16] 高小强, 郑忠. 高炉铁水含硅量和含硫量动力学预报研究[J]. 钢铁, 1995(4):10-13.
[17] 王宇红, 赵旭, WANGYu-hong,等. 基于 MLD 模型的预测控制可行性与约束优先级研究
[J]. 控制与决策, 2010, 25(9):1389-1392.
[18] 李静. 基于数据挖掘的高炉铁水温度建模与预报[D]. 内蒙古科技大学, 2013.
[19] 刘均会, 徐广尧. 用 Si—S 图分析高炉操作[J]. 包钢科技, 1981(1):45-49.
[20] 李国勇. 智能控制及其 MATLAB 实现[M]. 电子工业出版社,2005.

附录

  • 8
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

2024年华数杯数学建模

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值