火焰和烟雾检测在安全领域有着广泛的应用,特别是在森林火灾、工业场景和家用监控系统中,能够及时有效地检测火灾情况至关重要。随着深度学习的发展,火焰与烟雾检测技术得到了极大的提升。YOLO系列模型(如YOLOv5、YOLOv6、YOLOv7、YOLOv8和YOLOv10)作为目标检测中的佼佼者,广泛应用于此类任务中。
本文将基于YOLO系列模型,结合火焰与烟雾数据集,设计并实现一个火焰与烟雾检测系统。我们将使用YOLOv5/v6/v7/v8/v10,并构建一个简单的图形用户界面(UI)来实现这一检测系统,最终目标是实现对视频流或图像的实时火焰与烟雾检测。
目录
一、项目概述
-
系统功能:基于深度学习模型对视频或图片中的火焰和烟雾进行实时检测,用户通过简单的UI界面上传图片或选择视频,系统将对火焰或烟雾进行识别并标注。
-
模型选择:我们使用YOLO系列模型(YOLOv5、YOLOv6、YOLOv7、YOLOv8和YOLOv10)进行火焰与烟雾检测,这些模型的结构优越,检测速度和精度在业界表现卓越。
-
数据集</