一、引言
随着海洋开发和水下监测的快速发展,水下目标检测技术在海洋科学、海洋工程、军事等领域中得到了广泛的应用。然而,由于水下环境的复杂性和不稳定性,例如光照不均匀、悬浮物干扰、颜色衰减等问题,水下目标的检测任务比陆地目标检测更加具有挑战性。近年来,随着深度学习技术的发展,尤其是卷积神经网络(CNN)和目标检测算法的进步,基于深度学习的水下目标检测系统在复杂水下环境中的应用逐渐成为现实。
在本篇文章中,我们将详细介绍如何使用深度学习算法(例如YOLO系列模型),结合实际应用场景,构建一个完整的水下目标检测系统。我们将从数据集的准备、模型的训练、系统的架构设计到模型的部署等方面进行详细的描述,并提供相应的代码实现。
目录
二、项目概述
水下目标检测系统的主要目标是:
- 目标检测:在复杂的水下环境中,识别并定位出水下目标,如鱼类、船只残骸、珊瑚等。
- 目标分类:区分不同类别的