基于深度学习的远距离停车位检测系统:YOLOv10 实现与 UI 界面设计

摘要

随着城市化进程的加快,停车难已成为许多城市面临的重大问题。有效的停车位检测系统可以帮助驾驶者快速找到可用停车位,减少在城市道路上的无效驾驶,提高交通效率。本文将介绍如何基于深度学习技术构建一个远距离停车位检测系统,采用YOLOv10模型进行目标检测,并提供完整的用户界面设计及数据集准备、模型训练等详细步骤,确保读者能够独立完成该项目。

目录

摘要

1. 引言

2. 系统架构

2.1 系统组成

2.2 系统流程

3. 数据集准备

3.1 数据集选择

3.2 数据集构建

3.3 数据标注

示例标注文件格式(YOLO格式)

3.4 data.yaml 文件

3.5 数据集结构

4. YOLOv10模型训练

4.1 环境配置

4.2 模型训练

4.3 模型评估

5. 用户界面设计

5.1 界面设计思路

5.2 Tkinter实现示例

5.3 界面功能

6. 系统优化与性能评估

6.1 模型优化

6.2 性能评估

7. 总结与展望


1. 引言

停车位检测的自动化能够极大提高城市停车管理的效率,减轻驾驶者的负担。传统的停车位检测方法依赖人工或静态传感器,难以满足现代城市的需求。基于深度学习的目标检测技术,如YOLO(You Only Look Once),为实时停车位检测提供了新的解决方案。YOLOv10模型通过其高效的特性,可以快速检测并识别图像中的停车位。

2. 系统架构

2.1 系统组成

远距离停车位检测系统主要由以下几个模块组成:

  • 数据采集模块:使用高清摄像头实时采集停车场图像。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值