摘要
随着城市化进程的加快,停车难已成为许多城市面临的重大问题。有效的停车位检测系统可以帮助驾驶者快速找到可用停车位,减少在城市道路上的无效驾驶,提高交通效率。本文将介绍如何基于深度学习技术构建一个远距离停车位检测系统,采用YOLOv10模型进行目标检测,并提供完整的用户界面设计及数据集准备、模型训练等详细步骤,确保读者能够独立完成该项目。
目录
1. 引言
停车位检测的自动化能够极大提高城市停车管理的效率,减轻驾驶者的负担。传统的停车位检测方法依赖人工或静态传感器,难以满足现代城市的需求。基于深度学习的目标检测技术,如YOLO(You Only Look Once),为实时停车位检测提供了新的解决方案。YOLOv10模型通过其高效的特性,可以快速检测并识别图像中的停车位。
2. 系统架构
2.1 系统组成
远距离停车位检测系统主要由以下几个模块组成:
- 数据采集模块:使用高清摄像头实时采集停车场图像。