1. 引言
稻田虫害是影响水稻产量和质量的重要因素,传统的虫害监测方法依赖人工观察,不仅费时费力,而且容易出现漏检或误检。随着深度学习技术的发展,基于计算机视觉的虫害检测系统成为了一种新兴的解决方案。本文将介绍如何构建一个基于YOLOv8的稻田虫害检测系统,包括UI界面的设计、模型的训练和数据集的准备。希望通过本项目,能够有效提高虫害监测的效率和准确性。
目录
2. 系统架构
本系统主要包括以下几个模块:
- 数据收集与预处理
- 模型训练
- 实时检测与结果展示
- 用户界面设计
2.1 数据收集与预处理
在开始模型训练之前,首先需要收集并准备虫害数据集。我们可以使用公开数据集或自行收集图片。
数据集结构
建议将数据集按如下结构组织:
dataset/
│
├── train/
│ ├── images/
│