随着科技的进步,智能家居系统逐渐进入日常生活,其中智能宠物喂食器便是一个热门应用。宠物喂食器的智能化,使得主人能够远程监控并管理宠物的饮食习惯,尤其在主人不在家时,能够确保宠物定时进食,保持健康。
在这个项目中,我们使用了NanoDet深度学习模型进行宠物行为的自动检测,并配合图形用户界面(GUI)实现实时监控。NanoDet是一个基于轻量级目标检测网络YOLO的优化版本,特别适合边缘设备进行实时检测。在本博客中,我们将详细介绍如何从头开始构建一个宠物喂食器自动检测系统,涵盖数据采集、模型训练、UI界面设计和实时检测等方面。
目录
1. 项目概述
本项目的目标是构建一个自动化的宠物喂食器检测系统,使用计算机视觉技术判断宠物是否接近或正在使用喂食器,以便在合适的时间自动投喂食物。系统将包括以下功能:
- 宠物行为检测:通过目标检测模型判断宠物是否接近喂食器。
- 自动投喂控制:当宠物靠近喂食器并准备进食时,自动触发投喂动作。
- 实时监控:通过UI界面实时查看宠物状态。