1. 引言
随着农业现代化的推进,植物营养状态的实时监控变得愈加重要。在农作物的生长过程中,营养的平衡直接影响着植物的健康和产量。传统的植物营养检测方式往往依赖于人工检测和化学分析,不仅效率低,且结果的时效性和准确性较差。随着深度学习技术的快速发展,基于图像的植物营养状态检测逐渐成为一种有效的监控方法。
本文将介绍一个基于NanoDet的植物营养状态检测系统。我们利用NanoDet模型进行植物目标的检测,并结合图像分析技术,实时评估植物的营养状态。通过设计一个基于PyQt5的UI界面,用户可以直观地查看植物的检测结果,进行数据的实时监控和记录。整个系统由数据采集、目标检测、营养状态评估和用户交互四大模块组成。
目录
2. 系统设计概述
2.1 系统架构
整个系统的架构包括以下几个关键部分:
- 数据采集模块:通过高清摄像头实时采集温室或田间的植物图像。
- 目标检测模块:使用NanoDet模型对图像