蝴蝶是自然界中美丽的昆虫之一,具有丰富的种类和色彩,它们在生态系统中扮演着重要的角色。蝴蝶的分类与检测不仅具有学术研究的意义,同时在生态保护、农业害虫防治和生物多样性保护等领域也有着广泛的应用。然而,由于蝴蝶种类繁多且具有复杂的形态特征,人工分类工作十分繁重,因此,开发一个基于深度学习的蝴蝶分类检测识别系统,能够高效地自动化进行蝴蝶种类分类,具有非常重要的现实意义。
本文将详细介绍如何利用YOLOv10(You Only Look Once)目标检测算法,结合UI界面,构建一个蝴蝶分类与检测识别系统。系统能够实时识别蝴蝶图像,并分类显示其所属种类,同时通过UI界面提供交互性,便于用户上传图片并查看检测结果。
目录
1. 项目背景与目标
1.1 项目背景
蝴蝶作为昆虫界的一类特殊物种,具有丰富的生态学和美学价值。随着全球气候变化及人类活动对生态环境的影响,蝴蝶的栖息地正逐渐减少,蝴蝶种群的监测与保护变得愈加重要。然而,鉴于蝴蝶种类繁多且形态差异较大,人工分类工作极为复杂,甚至需要专家才能正确区分。因此,利用计算机视觉技术,尤其是基于深度学习的