(全部都是公开资料,不代写论文,请勿盲目订阅)
2025年数学建模美赛期间,会发布思路和代码,赛前半价,赛前会发布往年美赛的经典案例,赛题会结合最新款的chatgpt o1 pro 分析,会根据赛题难度,选择合适的题目着重分析,没有代写论文服务,只会发布思路和代码,因为赛制要求,不会回复私信。内容可能达不到大家预期,请不要盲目订阅。已开通200美元/月的chatgpt pro会员,会充分利用chatgpt o1 pro进行分析发布。没有二次收费,2025年所有数学建模竞赛的思路都会发布到此专栏内,只需订阅一次。
1. 引言
小波分析(Wavelet Analysis)作为一种强有力的信号处理工具,广泛应用于数据压缩、信号去噪、图像处理、金融市场分析、地震预测等领域。在数学建模竞赛中,特别是针对具有高频噪声、时变性质或多尺度特征的时间序列数据,应用小波分析进行预测具有独特的优势。随着大数据和机器学习的迅速发展,小波分析也不断发展出与深度学习结合的创新方法,展现了其强大的数据处理能力。
本文将详细介绍小波分析的基本理论、