1. 引言
1.1 研究背景
在医院环境中,病房是患者进行康复和治疗的重要场所。然而,由于病房管理涉及多个复杂因素(如医护人员有限、病房监控不足等),患者在病房内可能出现各种异常行为,如:
- 跌倒:老年患者或身体虚弱的患者可能因行动不便而发生跌倒事故。
- 离床或逃离:某些精神状态不稳定或需要特别看护的患者可能会在未被许可的情况下离开病床。
- 自残或攻击行为:某些精神疾病或疼痛反应可能导致患者自残或攻击行为。
- 呼救或异常姿态:患者可能因突发疾病或突发状况而需要紧急救助。
病房异常行为检测系统可以通过对监控视频的实时分析,识别上述异常行为并发出报警,从而帮助医护人员及时干预,保障患者安全,减少医疗事故。
1.2 研究意义
开发一套基于深度学习的病房异常行为检测系统,能够在病房中实时监测患者的行为状态,并自动识别和报警,具有以下重要意义:
✅ 提高医护效率