基于深度学习的吸烟行为检测系统:YOLOv5+UI界面+数据集

1. 引言

1.1 吸烟的危害与监控必要性

吸烟是全球范围内导致慢性病和死亡的重要因素之一。根据世界卫生组织(WHO)的统计数据,每年因吸烟相关疾病死亡的人数超过800万,其中包括因接触二手烟而死亡的非吸烟者约120万人。吸烟不仅危害健康,还会对公共环境和社会秩序造成负面影响。因此,全球范围内对吸烟行为的监控和限制成为一项重要的社会问题。

在公共场所(如学校、医院、车站等)中,禁止吸烟已成为普遍共识。但由于缺乏有效的监控手段,吸烟行为仍然频繁发生,给管理和执法带来了困难。传统的监控手段主要依赖人工巡视和监控录像回溯,存在以下问题:

  • 监控覆盖不全面,存在盲区
  • 人工监控存在滞后性,难以及时干预
  • 需要大量人力成本,效率低

为了解决上述问题,近年来,计算机视觉和深度学习技术被广泛应用于智能监控系统。通过深度学习模型,能够实现对吸烟行为的自动检测和实时预警。


1.2 吸烟行为检测的技术难点

吸烟行为检测涉及多个技术难点:

  1. 目标检测难度大
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值