1. 引言
1.1 吸烟的危害与监控必要性
吸烟是全球范围内导致慢性病和死亡的重要因素之一。根据世界卫生组织(WHO)的统计数据,每年因吸烟相关疾病死亡的人数超过800万,其中包括因接触二手烟而死亡的非吸烟者约120万人。吸烟不仅危害健康,还会对公共环境和社会秩序造成负面影响。因此,全球范围内对吸烟行为的监控和限制成为一项重要的社会问题。
在公共场所(如学校、医院、车站等)中,禁止吸烟已成为普遍共识。但由于缺乏有效的监控手段,吸烟行为仍然频繁发生,给管理和执法带来了困难。传统的监控手段主要依赖人工巡视和监控录像回溯,存在以下问题:
- 监控覆盖不全面,存在盲区
- 人工监控存在滞后性,难以及时干预
- 需要大量人力成本,效率低
为了解决上述问题,近年来,计算机视觉和深度学习技术被广泛应用于智能监控系统。通过深度学习模型,能够实现对吸烟行为的自动检测和实时预警。
1.2 吸烟行为检测的技术难点
吸烟行为检测涉及多个技术难点:
- 目标检测难度大