1. 引言
舰船检测与识别是海洋安全和国防领域的重要研究课题。随着全球海上活动的日益频繁,实时准确地检测和识别舰船,不仅有助于提高海上交通管理效率,还在国防监控、非法捕捞、海盗预警等方面具有重要意义。
传统的舰船检测方法主要依赖于雷达、声呐和人工监控,但这些方法存在一定的局限性:
- 雷达在复杂海况下易受干扰,导致误判。
- 声呐在探测距离和分辨率上存在局限。
- 人工监控效率低,且受人为因素影响较大。
近年来,随着深度学习和计算机视觉的快速发展,基于卷积神经网络(CNN)的目标检测技术在舰船检测与识别中展现出了强大的潜力。YOLO(You Only Look Once)系列模型以其速度快、检测精度高的特点,已成为舰船检测领域的主流方法之一。
本项目基于YOLOv8,构建一个完整的舰船检测与识别系统,能够实时检测和识别舰船,并通过UI界面展示检测结果。本文将详细介绍系统的整体架构、模型训练、推理与UI实现的完整过程,并提供完整的代码和数据集下载路径。
2. 项目背景
2.1 舰船检测的重要性
舰船检测与识别在以下领域具有