1. 引言
1.1 背景
自动驾驶技术是现代智能交通系统的重要组成部分,其核心任务之一就是目标检测。目标检测在自动驾驶中扮演着至关重要的角色,它不仅能够识别周围环境中的行人、其他车辆、交通标志、红绿灯等目标,还能够通过实时检测提供决策依据,确保自动驾驶系统的安全性和稳定性。
随着深度学习技术的快速发展,尤其是目标检测领域的突破,YOLO(You Only Look Once)系列模型成为了自动驾驶系统中的常用工具。YOLOv8,作为YOLO系列的最新版本,具备了更高的检测精度和更强的实时处理能力,特别适合于实时的自动驾驶场景。
本项目旨在实现一个基于YOLOv8的自动驾驶目标检测系统,通过集成YOLOv8与用户友好的UI界面,帮助自动驾驶系统实时检测并识别交通环境中的各种目标。
1.2 研究意义
自动驾驶的广泛应用依赖于高精度和高实时性的目标检测系统。通过结合深度学习和计算机视觉技术,YOLOv8在实时目标检测中的表现已达到行业领先水平。本系统的设计和实现具有以下几方面的重要意义:
- 提高自动驾驶的安全性:准确的目标检测有助于确保自动驾驶车辆在复杂的交通环境中做出正确的决策。</