一、引言
自动驾驶作为当前人工智能领域的热点技术之一,正在为人类带来巨大的变革。自动驾驶系统的关键技术之一是目标检测,它可以识别并定位汽车周围的障碍物、行人、交通标志、车辆等,以保证安全驾驶。目标检测在自动驾驶中的应用包括但不限于避障、路径规划、车道检测、交通标志识别等任务。
深度学习技术特别是YOLO(You Only Look Once)系列模型,已经成为目标检测领域中的重要技术。YOLO模型具有高效、快速和精确的特点,适合应用于自动驾驶场景中,特别是在需要实时检测的任务中。
本博客将详细介绍如何基于深度学习的YOLOv5、YOLOv6、YOLOv7和YOLOv8模型实现自动驾驶目标检测系统,并提供相应的UI界面设计、模型训练代码、数据集及参考资源。目标是帮助读者快速上手,构建一个高效的自动驾驶目标检测系统。
二、项目概述
2.1 项目目标
本项目的目标是开发一个基于YOLO系列模型的自动驾驶目标检测系统。系统的核心功能包括:
- 数据集准备:使用包含交通场景的图像数据集,标注各类目标物体(如行人、其他车辆、交通标志等)。
- 目标检测与分类:利用YOLO系列模型(YOLOv5、YOLOv6、Y