1. 引言
1.1 背景与意义
印刷电路板(Printed Circuit Board,PCB)是现代电子设备的重要组成部分,广泛应用于通信设备、汽车电子、消费类电子产品、航空航天、医疗设备等领域。PCB的质量直接影响到电子设备的性能和稳定性。因此,PCB缺陷检测是电子制造行业的重要环节。
传统的PCB检测方法主要依赖于人工检测和自动光学检测(AOI),但这些方法存在以下问题:
- 人工检测:耗时耗力,且受操作者技能水平和疲劳度的影响,容易出现漏检和误检。
- AOI检测:基于图像处理和模板匹配,受限于光照、噪声、PCB板颜色变化等因素,检测精度不高。
近年来,随着深度学习技术的发展,基于卷积神经网络(CNN)的目标检测技术在图像识别领域取得了突破性进展。YOLO(You Only Look Once)系列模型在目标检测任务中表现优异,具有检测速度快、准确率高的特点,特别适合于PCB板缺陷检测任务。