引言
疲劳驾驶是导致交通事故的重要原因之一,长期驾驶容易使驾驶员产生视觉疲劳、注意力下降等症状,增加事故发生的概率。据统计,疲劳驾驶已成为全球范围内交通事故的主要致因之一。尤其在长途运输中,疲劳驾驶的影响更加严重,因此,研发一种高效、智能的疲劳驾驶检测系统变得尤为重要。随着深度学习技术的发展,基于计算机视觉和深度学习的方法,能够通过对驾驶员面部特征、眼睛状态、头部姿态等信息的实时监测,有效判断驾驶员是否处于疲劳状态。
YOLO(You Only Look Once)系列算法自提出以来,因其快速、高效的目标检测能力广泛应用于各类实时检测任务中。YOLOv10作为YOLO系列中的最新版本,具备了更高的检测精度与实时性,非常适合用于疲劳驾驶的检测。本博客将详细介绍如何利用YOLOv10实现一个基于深度学习的疲劳驾驶检测系统,并结合PyQt5构建一个图形化界面(UI),使得用户能够方便地上传视频进行疲劳驾驶检测。
系统概述
1. 疲劳驾驶检测的挑战与需求
疲劳驾驶的检测系统需要准确地判断驾驶员是否存在疲劳状态,而这依赖于多种因素的判断,包括但不限于以下几种:
- 面部表情识别:疲劳驾驶时,驾驶员的面部表情往往会发生变化&#