1. 引言
血细胞计数与检测在医学诊断中扮演着至关重要的角色。血液中不同类型的细胞(如红细胞、白细胞和血小板)的数量和形态特征能够为临床医生提供有关患者健康状况的重要信息。传统的血细胞计数方法依赖于显微镜检查和人工计数,不仅效率低下,还容易受到人为误差的影响。
随着深度学习技术的发展,基于计算机视觉的自动化血细胞检测与计数方法逐渐成为医学影像分析的重要应用之一。YOLO(You Only Look Once)系列模型,尤其是YOLOv10,在物体检测任务中表现出色,适用于实时检测和高精度的目标定位。本文将详细介绍如何利用YOLOv10构建一个血细胞智能检测与计数系统,并通过PyQt5实现一个UI界面,使得医务人员能够方便地进行血细胞的实时检测和计数。
在本文中,我们将详细阐述数据集准备、YOLOv10模型训练、UI界面设计以及完整的代码实现。
2. YOLOv10模型概述
2.1 YOLOv10的优势
YOLOv10是YOLO系列中的最新版本,继承了YOLO家族的优点,并进行了多项优化,具有更高的检测精度和更快的推理速度。以下是YOLOv10在血细胞检测中的优势:
- 实时检测:YOLOv10能够在实时视频流中进行目标检测&#x