1. 引言
皮肤癌是全球最常见的癌症之一,早期检测对于提高生存率至关重要。近年来,基于深度学习的计算机视觉方法已成为医学影像分析的关键技术。ISIC(International Skin Imaging Collaboration)数据集提供了大量标注良好的皮肤病变图像,为智能诊断提供了基础。
本博客介绍如何使用最新的 YOLOv10 模型结合 UI 界面,实现高效的皮肤癌检测系统。具体内容包括 ISIC 数据集的处理、YOLOv10 模型的训练与推理、UI 设计等,并提供完整代码。
2. ISIC 数据集介绍
ISIC(International Skin Imaging Collaboration)是全球最权威的皮肤影像数据集之一,包含各种皮肤病变的图像及其标签。数据集主要用于皮肤癌检测和分类任务。
2.1 数据集来源
-
官网:ISIC Archive
-
常见皮肤病变类别:
- 黑色素瘤(Melanoma)
- 基底细胞癌(Basal Cell Carcin