引言
稻米是全球最重要的粮食作物之一,对于保障粮食安全具有至关重要的作用。然而,稻田中的病害、杂草和病斑等问题,常常影响到稻米的产量和质量。传统的病害识别方法依赖于人工检测,这不仅效率低下,而且准确性较差。随着深度学习技术的飞速发展,基于计算机视觉的病斑与稻种自动检测成为了解决这一问题的有效方案。
在这一背景下,YOLO(You Only Look Once)系列算法作为一种高效且精确的目标检测算法,已被广泛应用于农业图像识别任务。YOLOv10是YOLO系列的最新版本,具有更高的精度和实时性,尤其适合用于稻种和病斑检测任务。本文将介绍如何基于YOLOv10实现稻种与病斑检测系统,并结合UI界面展示检测结果。
目录
- 引言
- 稻种与病斑检测的挑战与需求
- YOLOv10模型概述
- Rice Seed Dataset数据集介绍
- 数据预处理与标注
- YOLOv10模型训练与评估
- UI界面设计与实现
- 完整代码实现
- 总结与展望