概述
随着工业、建筑业和交通等行业对劳动安全的高度重视,佩戴安全帽和反光衣已经成为工作人员在工作现场的必要防护措施。为了提高工作场所的安全性,实时监控工作人员是否佩戴安全帽和反光衣显得尤为重要。近年来,基于深度学习的目标检测技术被广泛应用于各种物体检测任务,其中YOLO(You Only Look Once)系列模型因其高效性和实时性成为了目标检测领域的主流方法。
本文将介绍如何使用YOLOv8模型进行安全帽和反光衣的检测,并通过一个UI界面来实时显示检测结果。同时,本文将提供完整的代码和数据集,并详细讲解每个步骤。
1. 安全帽与反光衣检测的重要性
安全帽和反光衣在许多行业中都起着至关重要的作用,尤其是在建筑工地、交通管理、仓储等高风险环境下。佩戴这些防护设备不仅可以减少工人受伤的风险,还能在低光环境中提高可见性。
- 安全帽:安全帽的主要作用是防止头部受到外界撞击伤害,尤其是在高处作业时尤为重要。
- 反光衣:反光衣通过反射光线来提高穿戴者在暗光或低能见度环境中的可见性,从而减少事故的发生。
通过深度学习模型自动检测安全帽和反光衣,不仅可以提高现场安全性,还能减轻人工巡查的负担。