一、研究背景与意义
随着人工智能技术的飞速发展,深度学习在目标检测领域取得了突破性进展。行人检测作为目标检测中的典型应用之一,广泛应用于智能监控、自动驾驶、交通系统等领域。尤其在公共安全领域,高效准确的行人检测系统可以有效辅助人类进行异常行为监控、人员流量统计、交通事件分析等。
本项目旨在通过YOLOv8(You Only Look Once 第八版)实现对行人的实时检测,并结合PyQt5构建一个具有UI界面的可视化平台,进一步提升模型的实用性和用户交互性。
二、YOLOv8模型简介
YOLOv8 是 Ultralytics 在 YOLO 系列模型中的最新版本,其主要特点如下:
- Anchor-Free架构:不同于YOLOv5,YOLOv8采用无锚框机制,提升了训练和推理的速度。
- 自适应输入大小:可以根据图像尺寸自动调整网络结构,提高了模型的泛化能力。
- 轻量化设计:更适合部署到边缘设备或移动端。
- 模块化结构:便于快速集成和调试。
三、参考数据集
本项目选用的是开源的 Crowd