行人检测(Pedestrian Detection)—基于YOLOv8的深度学习目标检测模型实现与UI可视化系统设计

一、研究背景与意义

随着人工智能技术的飞速发展,深度学习在目标检测领域取得了突破性进展。行人检测作为目标检测中的典型应用之一,广泛应用于智能监控、自动驾驶、交通系统等领域。尤其在公共安全领域,高效准确的行人检测系统可以有效辅助人类进行异常行为监控、人员流量统计、交通事件分析等。

本项目旨在通过YOLOv8(You Only Look Once 第八版)实现对行人的实时检测,并结合PyQt5构建一个具有UI界面的可视化平台,进一步提升模型的实用性和用户交互性。


二、YOLOv8模型简介

YOLOv8 是 Ultralytics 在 YOLO 系列模型中的最新版本,其主要特点如下:

  • Anchor-Free架构:不同于YOLOv5,YOLOv8采用无锚框机制,提升了训练和推理的速度。
  • 自适应输入大小:可以根据图像尺寸自动调整网络结构,提高了模型的泛化能力。
  • 轻量化设计:更适合部署到边缘设备或移动端。
  • 模块化结构:便于快速集成和调试。

三、参考数据集

本项目选用的是开源的 Crowd

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习YOLO目标检测实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值