一、项目背景与意义
1.1 背景介绍
在计算机视觉领域,人脸检测和识别是重要的研究方向,广泛应用于安全监控、身份验证和人机交互等场景。LFW(Labeled Faces in the Wild)数据集是该领域最具影响力的基准之一,提供了丰富的名人面孔图像,广泛用于评估和训练人脸识别模型。
本项目旨在构建一个基于 YOLOv8 的人脸检测系统,能够实时检测和分类名人面孔,并通过 PyQt5 实现用户友好的图形界面,便于在图像、视频和实时摄像头中进行检测和展示。
二、数据集选择与预处理
2.1 LFW 数据集概述
LFW(Labeled Faces in the Wild)数据集由马萨诸塞大学阿默斯特分校(UMass Amherst)发布,包含 13,000 多张从网络上收集的名人面孔图像,涵盖 5,749 个不同的个体。每张图像都标注了对应的人的姓名,适用于人脸识别和验证任务。
2.2 数据下载与组织
您可以从 LFW 官方网站下载数据集。下载后,将数据组织为以下结构:
复制编辑
lfw_dataset/
├── images/
│ ├─