引言
多目标跟踪与分割(MOTS)是计算机视觉中的一个关键任务,其目标不仅是跟踪视频序列中物体的运动,还要将物体从背景中分割出来。这个任务在多个领域都有广泛的应用,例如自动驾驶、监控和视频分析等。MOTS结合了物体检测、跟踪和分割三项任务,因此,它在现代计算机视觉算法中占据了重要位置。
在本博客中,我们将使用YOLOv8模型实现MOTS,专注于两个物体类别:行人和车辆。我们还将把跟踪和分割任务集成到用户界面(UI)中,方便更好的可视化与交互。该解决方案将详细介绍所需的工具、数据集和代码。
1. MOTS概述
MOTS实际上是两个核心任务的结合:
- 物体检测:在每一帧中识别并定位物体。
- 物体跟踪:保持物体在连续帧中的身份。
对于MOTS,另一个额外的要求是分割物体。分割任务涉及到在图像中准确区分物体的边界并将其从背景中分离出来。由于物体之间可能相互遮挡、运动方式不可预测,并且可能出现不同的光照或天气条件,这使得分割任务变得非常具有挑战性。
在本项目中,我们将专注于