引言
随着计算机视觉技术的快速发展,物体检测与分割已经成为了深度学习领域中最重要的研究方向之一。特别是在图像理解的任务中,物体检测和语义分割的结合能够提供更为丰富的上下文信息和物体细节。在实际应用中,物体检测与分割的需求非常广泛,包括自动驾驶、监控、机器人视觉等领域。
在本文中,我们将介绍如何使用YOLOv8模型实现一个能够进行多类别物体检测与分割的系统。我们选择了COCO Stuff数据集作为训练数据集,涵盖了172个物体类别,包括路面、建筑、天空、树木等常见场景元素。我们将使用YOLOv8模型结合UI界面,展示如何在图像和视频中进行实时物体检测和分割,并提供相应的代码实现。
1. COCO Stuff数据集概述
COCO Stuff数据集是一个由Microsoft COCO团队发布的扩展版本,它包含了更为丰富的标签信息,特别是针对场景理解任务。COCO Stuff包含了172个不同的物体和场景类别,并且提供了对这些类别的语义分割标签。
1.1 COCO Stuff数据集的特点
- 丰富的标签:COCO Stuff包含的172个类别涵盖