一、前言
随着智能交通系统(ITS)和自动驾驶技术的快速发展,交通场景中的车辆检测与分类问题变得日益重要。车牌识别、交通监控、自动驾驶等系统需要准确地从复杂的交通图像中识别和分类不同类型的车辆。深度学习尤其是基于卷积神经网络(CNN)的目标检测方法,如YOLO(You Only Look Once),为这些任务提供了强有力的解决方案。
在本文中,我们将基于Swedish Car Dataset数据集,使用YOLOv8进行五种不同类型汽车的检测与分类。通过结合YOLOv8的优势(高效率、实时性强)和现代UI界面的展示,帮助我们实现一个高效的车辆检测系统。具体内容将包括数据集的介绍、YOLOv8的应用、模型训练、以及通过图形界面展示检测结果的实现。
二、Swedish Car Dataset 数据集
2.1 数据集概述
Swedish Car Dataset是一个用于车辆检测和分类的多类别数据集。该数据集包含了五种不同类型的车辆,这五种类型分别为:
- 小汽车(Car) :包括普通的小型汽车,如轿车等。
- SUV(SUV)