一、前言
随着全球航空、航海以及陆地交通的日益发展,如何精准、实时地识别空中交通、海上交通以及地面交通的目标,成为智能交通系统中的一个关键问题。特别是在空中交通管理、智能航运、自动驾驶及交通监控等应用场景中,目标检测技术扮演着至关重要的角色。
本文将详细介绍如何使用YOLOv8进行ATLAS (Aerial Traffic Labeled Analysis Dataset)数据集中的目标检测与分类任务。ATLAS数据集包含四类不同的交通工具:飞机、汽车、船和火车。我们将采用YOLOv8模型,训练目标检测网络,并通过图形用户界面(UI)展示检测结果。本博客将深入介绍数据集、YOLOv8模型的应用、完整的代码实现以及UI界面展示的步骤,帮助读者理解如何将深度学习技术应用于空中和地面交通的检测和管理。
二、ATLAS 数据集介绍
2.1 数据集概述
ATLAS数据集专注于空中、海上和地面交通工具的目标检测与分类,包含四个主要类别:
- 飞机(Aircraft) :包括各种类型的飞机,如民航客机、私人飞机、战斗机等。
- 汽车(Car) :地面交通工具,包括各种类型的小轿车、SUV、货