1. 引言
目标检测是计算机视觉中的一个重要研究方向,其目标是从图像或视频中识别并定位出感兴趣的物体。近年来,随着深度学习技术的发展,YOLO(You Only Look Once)系列模型凭借其优异的性能和高效的实时处理能力,在目标检测任务中得到了广泛应用。YOLOv10作为YOLO系列的最新版本,在速度和精度上取得了很大的突破。
Mapillary Vistas数据集是一个多类别的街景图像数据集,包含40个类别的目标,如街道、建筑、车辆、行人等。该数据集旨在为自动驾驶、智能城市等领域提供高质量的街景图像和物体标注信息,广泛用于目标检测、实例分割等任务。
本文将详细介绍如何使用YOLOv10进行Mapillary Vistas数据集的目标检测,涵盖数据集的介绍、数据预处理、YOLOv10的训练与应用、以及如何构建一个简单的UI界面展示检测结果。通过该博客,您将获得如何使用YOLOv10进行目标检测的完整教程,并能运行相关代码实现实时目标检测。
2. Mapillary Vistas数据集概述
Mapillary Vistas数据集是由Mapillary团队发布的一个大规模街景图像数据集,包含来自全球各地的街景图像。这些图像涵盖了40个不同的物体类别,适用于自动驾驶、计算机视觉和机器人等领域的研究。该数据集的图像包含多种复杂的场景,如城市街道、高速公路、乡村道路等