[特殊字符]【基于YOLOv5与Open Images的600类目标检测系统:含PyQt5 UI完整实现】✈️[特殊字符][特殊字符][特殊字符]

🧾 1. 项目简介

目标检测是计算机视觉中至关重要的研究方向之一,其目标是在图像中定位并识别出所有感兴趣的物体。本文将介绍如何基于YOLOv5模型,使用大规模的Open Images数据集,实现一个600类通用目标检测系统,并通过 PyQt5 构建一个图形化界面,支持图像和摄像头的实时检测展示。


📚 2. Open Images 数据集详解

Open Images 是由 Google 发布的一个大规模图像数据集,旨在推动计算机视觉领域的发展。

🧾 2.1 数据集组成

  • 图像数量:约900万张
  • 图像级标签:约3000万个,涵盖约2万个概念
  • 边界框标注:约1500万个,涵盖600个对象类别
  • 视觉关系标注:375,000个,涉及57个类别
  • 平均每张图像的对象数:约8个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习YOLO目标检测实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值