1. 引言
在深度学习的视觉识别领域,目标检测作为一个非常重要的任务,广泛应用于自动驾驶、安防监控、工业自动化等各个领域。目标检测不仅需要识别图像中的目标,还需要精准地给出目标的边界框。近年来,YOLO(You Only Look Once)系列模型凭借其速度和准确性,在目标检测任务中取得了显著的成功。
Tiny YOLO是YOLO系列的一个轻量化版本,旨在解决在资源受限设备上运行的目标检测问题。Tiny YOLO相较于标准YOLO模型,通过减少网络层数和参数量,在保证一定精度的前提下,提供了更快的推理速度。因此,Tiny YOLO非常适合用于实时性要求较高的应用场景,如嵌入式设备、移动端等。
本篇博客将介绍如何使用YOLOv5在Tiny YOLO数据集上进行目标检测,并结合PyQt5开发一个用户友好的UI界面。我们将涵盖从数据预处理、YOLOv5模型训练、推理到UI界面展示的完整流程,帮助您深入了解目标检测的全过程。
2. Tiny YOLO数据集概述
Tiny YOLO数据集是一个针对小型目标检测任务的公开数据集,包含了10个常见类别,适合用于快速原型开发和学术研究。数据集中的每个类别都具有较为简单的结构,适合训