引言
随着深度学习技术的迅速发展,图像分类与目标检测技术已经在许多领域取得了显著的成果。从自动驾驶中的行人检测,到电商平台中的商品识别,目标检测技术在许多实际应用中扮演着至关重要的角色。YOLO(You Only Look Once)系列算法作为一种实时且高效的目标检测算法,广泛应用于各类视觉识别任务中。
Fashion MNIST数据集作为计算机视觉中常用的图像分类数据集之一,包含了多种服装类别的图像,适用于训练和评估不同的图像分类与目标检测模型。本文将详细探讨如何使用YOLOv5进行Fashion MNIST数据集的服装检测,并展示如何将其与UI界面结合,实时展示检测结果。我们将使用YOLOv5进行模型训练与推理,并通过图形界面展示检测结果。
1. YOLOv5简介与Fashion MNIST目标检测任务
1.1 YOLOv5概述
YOLOv5(You Only Look Once version 5)是YOLO系列目标检测算法的一个重要版本。YOLOv5模型能够高效地检测图像中的目标,并为每个目标生成边界框。该算法的最大优点是其高效性和实时性,适合在许多需要快速处理图像的应用中使用。
YOLOv5模型的结构包括:
- Backbone