引言
随着智能交通系统的不断发展,计算机视觉在交通监控、自动驾驶、交通管理等领域的应用变得越来越广泛。目标检测技术,尤其是YOLO(You Only Look Once)系列模型,因其高效性和实时性,成为智能交通系统中重要的工具之一。通过使用YOLOv5模型,我们可以快速准确地检测交通场景中的各种目标,如车辆、交通标志、行人等。
LISA(Laboratory for Intelligent Systems and Applications)数据集是一个专门为智能交通系统中的目标检测任务设计的标准数据集。该数据集包含了车、交通标志、行人等4个类别,适合用于交通监控和自动驾驶系统中的目标检测任务。本文将介绍如何基于YOLOv5模型与LISA数据集进行训练,并通过一个简单的UI界面展示目标检测的结果。
1. YOLOv5与LISA数据集
1.1 YOLOv5简介
YOLOv5(You Only Look Once)是一个高效的目标检测模型,能够在确保较高检测精度的同时,实现实时推理速度。YOLOv5的架构设计简单且高效,支持从小型嵌入式设备到大型服务器的多种硬件平台。YOLOv5是YOLO系列模型的一个重要分支,其支持端到端训练,能够适应不同的任务需求。
YOLOv5的主要特