1. 引言
在计算机视觉领域,多目标跟踪(Multi-Object Tracking, MOT)是一个重要且具有挑战性的研究方向。它不仅要检测视频中的多个目标,还需要在连续的帧之间维持目标的身份一致性。本文将详细介绍如何基于YOLOv5目标检测算法和DeepMOT多目标跟踪算法,构建一个完整的车辆和行人跟踪系统,并提供可视化UI界面。
本系统具有以下特点:
- 采用YOLOv5作为基础检测器,提供高精度的车辆和行人检测
- 使用DeepMOT算法进行稳健的多目标跟踪
- 包含完整的用户界面,便于实际部署和使用
- 提供详细的数据集建议和训练方法
2. 系统架构概述
2.1 整体架构
我们的系统主要由三个核心模块组成:
- 目标检测模块:基于YOLOv5实现高效的车辆和行人检测
- 多目标跟踪模块:采用DeepMOT算法处理目标关联问题
- 用户界面模块:使用PyQt5构建友好的交互界面
系统工作流程如下:
- 输入视频流或图像序列
- YOLOv5检测每帧中的车辆和行人
- DeepMOT算法关联检测结果,