基于YOLOv5和DeepMOT的多目标跟踪系统:车辆与行人检测实战

1. 引言

在计算机视觉领域,多目标跟踪(Multi-Object Tracking, MOT)是一个重要且具有挑战性的研究方向。它不仅要检测视频中的多个目标,还需要在连续的帧之间维持目标的身份一致性。本文将详细介绍如何基于YOLOv5目标检测算法和DeepMOT多目标跟踪算法,构建一个完整的车辆和行人跟踪系统,并提供可视化UI界面。

本系统具有以下特点:

  • 采用YOLOv5作为基础检测器,提供高精度的车辆和行人检测
  • 使用DeepMOT算法进行稳健的多目标跟踪
  • 包含完整的用户界面,便于实际部署和使用
  • 提供详细的数据集建议和训练方法

2. 系统架构概述

2.1 整体架构

我们的系统主要由三个核心模块组成:

  1. 目标检测模块:基于YOLOv5实现高效的车辆和行人检测
  2. 多目标跟踪模块:采用DeepMOT算法处理目标关联问题
  3. 用户界面模块:使用PyQt5构建友好的交互界面

系统工作流程如下:

  1. 输入视频流或图像序列
  2. YOLOv5检测每帧中的车辆和行人
  3. DeepMOT算法关联检测结果,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习YOLO目标检测实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值