一、前言
在深度学习的应用领域,目标检测是计算机视觉任务中的重要组成部分。目标检测的目标是识别图像中的对象并标出其位置,通常通过边界框(Bounding Box)来描述。随着YOLO(You Only Look Once)系列模型的推出,目标检测的速度和精度得到了显著提升。YOLOv5作为YOLO系列中最新的一版,其高效的实时推理和易用性使其成为了目标检测领域的佼佼者。
在本文中,我们将介绍如何使用YOLOv5进行目标检测任务,特别是在Weizmann马数据集(Weizmann Horses Dataset)上进行训练与测试。Weizmann马数据集是一个包含马的图像数据集,适用于训练目标检测模型。我们将通过YOLOv5实现对数据集中的马进行检测,并通过UI界面展示检测结果。
二、Weizmann Horses Dataset概述
2.1 数据集简介
Weizmann马数据集是由Weizmann Institute of Science提供的一个标准数据集,专门用于目标检测任务,数据集的主要目标是检测马的图像。该数据集包含的图像样本都是马的图像,且图像的分辨率较低,数据集相对较小,非常适合用于快速实验和学习。
- 类别&#