引言
地铁是现代城市公共交通系统中重要的一环,然而,随着乘客数量的增加,地铁站内的安全问题也逐渐显现,尤其是涉及危险物品的威胁。为了确保地铁的安全运营,检测危险物品(如爆炸物、枪械、液体化学品等)是一个迫切的需求。传统的安检系统虽然有效,但由于人工识别存在误判和漏判的风险,因此基于计算机视觉和深度学习的智能监控系统逐渐成为了未来地铁安全管理的重要方向。
本文将介绍如何利用YOLOv5模型进行地铁危险物品检测,并结合UI界面实时展示检测结果。本文将从以下几个方面详细阐述:
- YOLOv5模型的应用:利用YOLOv5进行地铁监控视频中的危险物品实时检测。
- UI界面的实现:使用Python的Tkinter库开发UI界面,实时展示监控画面以及检测结果。
- 数据集选择与处理:选择适合地铁危险物品检测的数据集,并进行数据处理和标注。
- 完整代码实现:提供从数据集准备到模型训练和UI开发的完整代码,帮助读者实现该系统。
1. 项目背景与目标
1.1 地铁危险物品检测的挑战
地铁作为公共交通系统的重要组成部分,通常会有