1. 引言
铁路运输是现代社会重要的交通方式之一,而铁路的安全性对于保障乘客和货物的安全至关重要。铁路轨道上的异物(如石块、垃圾、工具、设备故障件等)可能会导致列车脱轨、刹车失灵等严重事故,因此对铁路轨道进行实时监控,及时检测轨道上的异物,是保障铁路安全的重要手段。
随着计算机视觉和深度学习技术的迅速发展,基于深度学习的物体检测模型在铁路轨道异物检测中得到了广泛应用。YOLOv5作为一种高效的物体检测算法,能够在复杂的铁路环境中实现快速、准确的异物检测。本文将详细介绍如何基于YOLOv5模型构建铁路轨道异物检测系统,并开发一个UI界面进行实时检测。
2. 铁路轨道异物检测的背景与意义
铁路轨道异物检测是利用传感器和图像识别技术来识别轨道上是否存在影响列车安全的物体。常见的轨道异物包括:
- 石块、杂草等自然物体:这些物体可能因天气、施工等因素落入轨道,影响列车的正常运行。
- 工具、设备部件等人工物体:在铁路维护和运输过程中,工具或设备可能掉落,成为铁路轨道的潜在危险。
- 垃圾等不明物体:如有物体影响列车行驶,可能造成刹车失灵、脱轨等严重事故。
传统的轨道检测方法大多依赖人工巡查和定期检查,无