1. 引言
随着城市化进程的不断推进,停车难的问题日益严峻。尤其在商业区、办公区和居民区,停车场的管理效率直接影响着城市交通流畅度和居民的生活质量。因此,如何有效地监控和管理停车场的空位信息,成为了城市交通管理中的一大难题。
传统的停车场空位监控方法往往依赖人工巡检、地磁传感器或者地面传感器,这些方法通常存在实时性差、成本高以及维护复杂等问题。随着深度学习技术和计算机视觉的快速发展,基于摄像头的停车场空位检测技术已经成为一种高效、智能的解决方案。通过使用目标检测技术,如YOLOv5,我们能够在实时视频流中检测停车场中的空车位,自动识别停车位的状态。
本文将介绍如何结合YOLOv5与UI界面,开发一个智能的停车场空位检测系统,实时监控停车场的空位情况,并根据检测结果提供停车位的可用信息。
2. 停车场空位检测背景
停车场空位检测的目标是通过摄像头实时监控停车场中的空位和占用位,并及时将这些信息反馈给用户和管理人员。传统的空位检测方法常常需要传感器或手动更新,难以实现实时和全面的监控。基于计算机视觉和深度学习的空位检测,不仅能实时检测停车场内的空车位,还能准确地判断每个车位是否被占用。
停车场空位检测涉及以下几个主要任务:
- 目标检测:检测停车场中的每个车位是否被占用。 <