1. 引言
化学实验是一项复杂且充满风险的活动,实验过程中可能存在各种潜在的危险,如化学品泄漏、火灾、爆炸等。为了确保实验人员的安全,及时、准确的危险预警显得尤为重要。传统的安全监控往往依赖人工巡检或简单的报警装置,虽然能够提供一定的保障,但往往无法实时、高效地识别实验室中的危险隐患。
近年来,深度学习技术在计算机视觉领域的突破,为自动化危险预警系统提供了新的解决方案。YOLOv5(You Only Look Once Version 5)作为一款高效、实时的目标检测算法,能够实时分析视频流或图像中的危险因素,快速、准确地进行识别与预警。本篇博客将介绍如何基于YOLOv5构建一个化学实验危险预警系统,并实现UI界面的可视化展示。
2. 化学实验危险预警的重要性
化学实验室中的危险源多种多样,包括但不限于:
- 化学品泄漏:实验中使用的各种化学品如果发生泄漏,可能会引发火灾、爆炸或中毒事故。
- 火灾与爆炸:在实验过程中,由于高温、火源或不当操作,可能会引发火灾或爆炸,导致严重伤害。
- 有毒气体泄漏:某些化学反应可能会释放出有毒气体,如氯气、氨气等,若泄漏未能及时发现&