📌一、项目背景与动机
随着校园环保理念的不断深入,垃圾分类已成为高校绿色校园建设的重要一环。但在实际操作中,仍存在以下问题:
部分学生未按类别投放垃圾;
分类投放点无监管;
清洁人员工作量大、效率低;
部分智能分类设备成本过高,无法普及;
因此,开发一套基于深度学习的垃圾分类督导系统具有重大意义。它可借助计算机视觉手段:
实时监控垃圾投放行为;
自动识别垃圾种类;
发出提醒或记录错误投放行为;
为管理人员提供数据依据。
本项目结合 YOLOv5 + PyQt5 UI界面,打造一套适用于校园场景的垃圾分类督导系统 CampusTrashSupervisor。
🗃️二、数据集准备
2.1 数据集推荐
垃圾分类的目标检测数据集主要包含可回收物、有害垃圾、湿垃圾、干垃圾等类别。以下为推荐资源:
✅ 1. 公共数据集
Garbage Classification Dataset (Kaggle)
包含6类垃圾图片;
图像清晰,适合训练。
TrashNet Dataset
包含纸张、玻璃、塑料、金属、垃圾等分类;
原始为分类任务,可手动转为目标检测数据。