📌一、项目背景与动机
在现代教育中,虚拟实验室(Virtual Laboratory)正逐渐成为实验教学的重要补充手段。通过虚拟实验,学生可以在没有实际实验设备的情况下,进行实验操作,提升学习效率。然而,虚拟实验中的物体识别仍面临以下挑战:
- 物体多样性:实验中涉及的器材种类繁多,如试管、烧杯、量筒等。
- 交互性要求高:需要实时识别学生在虚拟环境中的操作对象。
- 准确性要求高:错误的识别可能导致实验结果不准确,影响学习效果。
为了解决上述问题,本文提出了一种基于YOLOv5的虚拟实验物体识别系统——VirtualLabObjectRecognizer。该系统结合了YOLOv5强大的目标检测能力和PyQt5的图形界面,实现了对虚拟实验中常见器材的实时识别和交互。
🗃️二、数据集准备
2.1 数据集选择
为训练YOLOv5模型,需要一个包含虚拟实验器材的目标检测数据集。推荐使用以下数据集:
- ChemLab Dataset:该数据集包含