基于YOLOv5的极地科考动物追踪系统设计与实现

🧊一、项目背景与意义

极地作为地球上最为寒冷、生态最为特殊的区域,其生态系统对全球气候变化具有显著的响应作用。监测极地动物的活动轨迹和行为模式,对于研究全球变暖、生物多样性保护和生态链变化具有重要意义。

传统的极地科考工作成本高、效率低、危险性大,而借助深度学习视觉技术,可实现远程、自动化、全天候的动物追踪系统,提高科研效率和安全性。


🛠️二、技术方案总览

组件 技术
目标检测 YOLOv5(PyTorch)
UI界面 PyQt5
数据集 自建+参考数据集(如Seal Dataset、Penguins Dataset)
模型部署 ONNX导出+PyTorch推理
视频/图像源 实时摄像头流 / 无人机拍摄 / 卫星图像

📚三、数据集介绍

3.1 数据来源

以下是公开可用于极地动物检测任务的参考数据集:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习YOLO目标检测实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值