🧊一、项目背景与意义
极地作为地球上最为寒冷、生态最为特殊的区域,其生态系统对全球气候变化具有显著的响应作用。监测极地动物的活动轨迹和行为模式,对于研究全球变暖、生物多样性保护和生态链变化具有重要意义。
传统的极地科考工作成本高、效率低、危险性大,而借助深度学习视觉技术,可实现远程、自动化、全天候的动物追踪系统,提高科研效率和安全性。
🛠️二、技术方案总览
组件 | 技术 |
---|---|
目标检测 | YOLOv5(PyTorch) |
UI界面 | PyQt5 |
数据集 | 自建+参考数据集(如Seal Dataset、Penguins Dataset) |
模型部署 | ONNX导出+PyTorch推理 |
视频/图像源 | 实时摄像头流 / 无人机拍摄 / 卫星图像 |
📚三、数据集介绍
3.1 数据来源
以下是公开可用于极地动物检测任务的参考数据集: