基于YOLOv5的水下机器人目标探测系统设计与实现

🌊一、项目背景与意义

随着海洋工程和水下作业的日益复杂,**水下机器人(ROV/AUV)**被广泛应用于资源勘探、沉船打捞、海洋生物研究、军用侦查等领域。然而,传统的图像处理算法在复杂水下环境(如光线不足、颗粒干扰、模糊等)下效果不佳。

为此,本文构建一个基于YOLOv5的水下目标检测系统,通过深度学习视觉感知增强水下机器人的智能性。系统集成 PyQt5 UI 界面,具备图像/视频检测、可视化展示与结果导出等能力,适合应用于真实海洋场景。


🔧二、系统架构与技术选型

模块 技术栈
深度学习框架 PyTorch
检测算法 YOLOv5(可扩展至YOLOv8)
数据标注 LabelImg + YOLO格式转换
UI开发 PyQt5
部署方式 桌面程序 / 服务器API
可选优化 图像增强、色彩校正、模糊滤波

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值