🌊一、项目背景与意义
随着海洋工程和水下作业的日益复杂,**水下机器人(ROV/AUV)**被广泛应用于资源勘探、沉船打捞、海洋生物研究、军用侦查等领域。然而,传统的图像处理算法在复杂水下环境(如光线不足、颗粒干扰、模糊等)下效果不佳。
为此,本文构建一个基于YOLOv5的水下目标检测系统,通过深度学习视觉感知增强水下机器人的智能性。系统集成 PyQt5 UI 界面,具备图像/视频检测、可视化展示与结果导出等能力,适合应用于真实海洋场景。
🔧二、系统架构与技术选型
模块 | 技术栈 |
---|---|
深度学习框架 | PyTorch |
检测算法 | YOLOv5(可扩展至YOLOv8) |
数据标注 | LabelImg + YOLO格式转换 |
UI开发 | PyQt5 |
部署方式 | 桌面程序 / 服务器API |
可选优化 | 图像增强、色彩校正、模糊滤波 |