一、项目背景
随着人工智能技术的发展,深度学习在考古领域的应用越来越受到关注。在实际考古发掘现场中,准确定位和识别散落的文物碎片是一项繁琐而费时的工作。传统方式依赖人工判断,不仅效率低下,而且易受人为主观因素干扰。
本项目旨在构建一个基于YOLOv5的考古现场文物自动定位系统,通过目标检测算法,对图像中各类考古文物(如陶片、骨器、青铜器等)进行自动识别与标注,并结合图形化UI界面,方便考古工作者快速查看识别结果,辅助决策与记录。
二、YOLOv5算法简介
YOLO(You Only Look Once)系列是当前最流行的实时目标检测算法之一。YOLOv5是Ultralytics团队基于PyTorch实现的一个轻量级、高性能版本。
YOLOv5的特点:
- 速度快,适合实时检测
- 模型轻便,适合边缘设备部署
- 提供
nano
,small
,medium
,large
,xlarge
等多个模型规模 - 训练与部署便捷,拥有完备的A