基于YOLOv5的考古现场文物自动定位系统

一、项目背景

随着人工智能技术的发展,深度学习在考古领域的应用越来越受到关注。在实际考古发掘现场中,准确定位和识别散落的文物碎片是一项繁琐而费时的工作。传统方式依赖人工判断,不仅效率低下,而且易受人为主观因素干扰。

本项目旨在构建一个基于YOLOv5的考古现场文物自动定位系统,通过目标检测算法,对图像中各类考古文物(如陶片、骨器、青铜器等)进行自动识别与标注,并结合图形化UI界面,方便考古工作者快速查看识别结果,辅助决策与记录。


二、YOLOv5算法简介

YOLO(You Only Look Once)系列是当前最流行的实时目标检测算法之一。YOLOv5是Ultralytics团队基于PyTorch实现的一个轻量级、高性能版本。

YOLOv5的特点:
  • 速度快,适合实时检测
  • 模型轻便,适合边缘设备部署
  • 提供nano, small, medium, large, xlarge等多个模型规模
  • 训练与部署便捷,拥有完备的A
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值