前言
在数据科学与深度学习的应用中,数据采集是一个不可忽视的环节。尤其对于行业分析,像化工产品的价格波动数据,这类信息往往分散在不同的网页上,需要通过爬虫技术来抓取和整理。本文将详细讲解如何通过 Python 构建一个高效的爬虫系统,自动抓取中国化工产品的价格波动数据,同时结合深度学习技术(YOLOv8模型)实现图像目标识别,并在UI界面中进行展示。最后,提供完整的代码实现,并给出参考数据集。
2. 工具与技术栈
2.1 Python
作为一种高效的编程语言,Python在数据采集与深度学习领域得到了广泛应用。我们将在本项目中利用Python进行爬虫开发、图像识别和UI界面设计。
2.2 Selenium
Selenium 是一个广泛使用的 Web 自动化测试工具。通过 Selenium,我们能够模拟用户行为,加载动态内容,以及抓取需要交互的网页数据。
2.3 BeautifulSoup
BeautifulSoup 是 Python 的一个 HTML/XML 解析库。它能非常方便地从网页中提取所需的信息,并且对 HTML 解析非常友好。