一、引言
随着人工智能技术的不断发展,自动化已逐步渗透到各个行业,其中医疗行业也在探索如何通过深度学习与计算机视觉提升服务效率与准确性。药房自动配药是一个典型的应用场景,主要涉及到药品的自动识别、分类及配药的验证过程。传统的药品配药过程往往依赖人工操作,不仅效率较低,而且容易出现错误,从而影响患者的健康。
本文介绍了一种基于YOLOv8的药房自动配药验证系统,该系统结合图形用户界面(UI)来展示药品识别与配药的过程,能够提高药品管理的准确性与效率。通过深度学习模型YOLOv8,系统能够自动识别药品,并验证药品是否与处方相符。我们将深入探讨数据集的选择与预处理、模型的训练与优化、UI界面的开发、系统集成等方面的内容,并提供完整的代码实现。
二、系统架构与技术选型
2.1 系统架构
药房自动配药验证系统的架构包括以下几个主要模块:
- 数据采集与预处理:从药房中采集药品图像,进行图像的预处理操作(如去噪、归一化、增强等)。
- YOLOv8目标检测:使用YOLOv8模型识别药品,并检测药品的标签、外观特征等信息。
- 药品验证与配药:通过对比药品的识别结