1. 引言
随着零售行业智能化的发展,智能货架系统被广泛应用于超市、便利店等场所,用于监控货架的实时库存。智能货架的核心目标之一是检测货架上的缺货情况,以便及时补货和优化库存管理。近年来,深度学习技术在目标检测任务中的表现卓越,尤其是YOLO(You Only Look Once)系列模型,以其高速的检测能力和优异的准确率,在各种实时检测任务中取得了显著的成果。
本博客将详细介绍如何使用YOLOv8模型进行智能货架的缺货检测,并展示如何通过Python构建一个简单的UI界面以便于用户与系统的交互。本文还将涉及数据集的选择与预处理,以及完整的代码实现,帮助开发者理解并应用于实际项目。
2. 深度学习与YOLOv8概述
2.1 深度学习在目标检测中的应用
目标检测是计算机视觉中的重要任务,旨在识别图像中的特定对象,并给出对象的位置(边界框)。传统的目标检测方法通常基于手工特征提取,而深度学习方法则通过端到端的方式学习图像中的特征,能够自动从原始数据中提取出高效的特征表示。
深度学习模型尤其是卷积神经网络(CNN)已成为解决目标检测问题的主要工具,尤其是在YOLO系列模型的推动下,目标检测的精度和速度都得到了显著提升。