1. 引言
在现代仓储管理中,库存盘点是一个关键环节。传统的库存盘点方式通常依赖人工操作,效率低且容易出错。为了提高盘点的效率和准确性,智能仓库系统逐渐成为物流管理中的重要组成部分。近年来,基于深度学习和计算机视觉的自动化库存盘点机器人成为一个热门研究方向,尤其是目标检测技术的快速发展为这一领域带来了新的解决方案。
本文将探讨如何使用YOLOv8(You Only Look Once version 8)目标检测算法与UI界面技术,设计并实现一个仓库库存盘点机器人。该机器人能够通过摄像头扫描仓库中的商品,并实时识别和记录库存信息。用户可以通过UI界面与机器人进行交互,查看盘点结果,优化仓库管理流程。
2. 系统需求与挑战
2.1 系统目标
本系统的目标是设计一个仓库库存盘点机器人,主要功能包括:
- 实时目标检测:通过YOLOv8模型检测并识别仓库中的商品,包括商品类型、数量和位置。
- 库存盘点:实时记录商品的库存信息,自动更新库存数量,减少人工操作。
- 用户交互界面