1. 引言
随着零售业的蓬勃发展,商场和超市的货架管理越来越受到重视。传统的库存管理方法已经不能满足高效、实时的需求。为了提升货架商品识别、补货提醒、库存管理的自动化程度,深度学习技术,尤其是目标检测领域的YOLO(You Only Look Once)模型,展现了强大的能力。
YOLO模型已经在图像识别中取得了显著成果,能够高效准确地进行目标检测。本博客将介绍如何利用YOLOv10模型进行货架商品的识别,并结合UI界面实现自动补货提醒和库存管理。我们将会深入讲解数据集的使用、YOLOv10模型的训练过程、UI界面的设计及实现,并提供完整的代码实现。
2. 背景与目标
- 货架商品识别:通过视觉检测技术识别货架上的商品类型、数量等信息,进行智能库存管理。
- 自动补货提醒:当某类商品的库存低于预设阈值时,系统自动发送补货提醒,确保货架上的商品不出现缺货情况。
- 库存管理:系统实时更新库存信息,确保库存数据的准确性和及时性。
目标是通过YOLOv10模型进行商品识别,并基于UI界面实现自动补货管理。