1. 引言
随着零售业和超市的飞速发展,传统的人工结算方式已经不能满足日益增长的消费需求。为了提高结算效率,许多商场和超市开始使用自助结算系统,这种系统不仅能加速结账过程,还能有效减少排队时间。然而,如何准确地识别顾客购买的商品种类,自动计算商品数量,并进行自动结算是一个核心问题。
为了应对这一挑战,深度学习中的目标检测技术,特别是YOLO(You Only Look Once)系列模型,为自助结算系统提供了强大的解决方案。YOLOv10作为YOLO系列的最新版本,凭借其高效的目标检测能力,能够精确快速地识别顾客购物篮中的商品类型和数量。本博客将详细介绍如何使用YOLOv10模型实现商品种类识别,并结合UI界面实现自助结算功能。
2. 目标与背景
自助结算系统的主要目标是通过计算机视觉技术自动识别顾客购买的商品种类。系统应该具备以下功能:
- 商品识别:能够通过摄像头自动识别顾客购物篮中的商品种类。
- 商品计数:对于重复商品,能够准确统计每种商品的数量。
- 自动结算:根据商品的种类和数量,自动计算总价,并生成结算