一、引言
化学实验中的反应监控是确保实验顺利进行的重要环节。尤其是在进行沉淀或变色反应时,实验人员需要及时观察反应进程,以判断是否达到了预定的实验条件。传统的监控方式多依赖于人工观察和手动记录,容易受到环境影响,且无法实时监测每一个细节。随着深度学习技术的发展,自动化监控变得更加可行,尤其是在图像处理和目标检测领域的应用,使得化学实验过程中的异常反应能够实时被捕捉和处理。
本博客将详细介绍如何利用YOLOv10(You Only Look Once)模型结合UI界面,设计一个自动化的化学实验监控系统,用于检测试管中的沉淀或变色反应。通过该系统,用户可以实时获得试管中反应的监测结果,提高实验过程的效率和准确性。
二、项目目标与背景
2.1 化学实验监控的重要性
在化学实验中,尤其是涉及沉淀反应、酸碱反应、氧化还原反应等复杂过程时,试管中的沉淀形成或液体的变色通常代表着某种化学反应的完成或接近完成。传统上,这些现象需要人工观察,这不仅容易出现人为错误,而且无法实时记录反应的详细过程。因此,利用计算机视觉技术对化学实验过程进行自动化监控,能够大大提高实验的精确性和效率。
2.2 项目目标
本项目的目标是基于YOLOv10目标检测模型和UI界面