🧩一、研究背景与意义
随着线上线下混合式教学的发展,课堂教学效率亟需新的评价手段。传统的教师主观判断学生注意力的方法存在不客观、实时性差等问题。因此,结合计算机视觉的课堂注意力分析系统可以成为智能教学的一部分。
“抬头”常常意味着学生在关注老师或教学内容,而“低头”可能表示分心、玩手机或疲倦。因此,自动检测学生“抬头”与“低头”的行为频次,可以间接反映教学效果与学生参与度。
📷二、项目目标与系统架构
本项目构建一个完整系统,包括:
- 基于YOLOv10的学生“抬头/低头”检测模型
- 可视化界面(基于PyQt5)用于实时视频分析
- 频率统计模块用于分析学生注意力波动
- 数据集推荐与训练方法说明
📂三、数据集准备
1. 推荐参考数据集
目前没有专门的“学生抬头/低头”公开数据集,但你可以基于以下数据集制作: